Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Talanta ; 274: 126037, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604046

RESUMEN

Antimony (Sb) is a toxic and potentially carcinogenic element in the environment. The toxicity of Sb(III) is ten times that of Sb(V). Therefore, on-site monitoring technique for dissolved Sb species is crucial for the study of Sb environmental processes. In this study, an automated, portable, and cost-effective system was developed for field simultaneous analysis of Sb(III) and Sb(III + V) in natural waters. The system comprised a portable atomic fluorescence spectrometer equipped with a built-in electrochemical H2 generator to reduce the consumption of acid/borohydride solution and make the atomizer more stable for on-site analysis. Flow injection technique was also used to achieve on-line pretreatment of water samples, including filtration, acidification, pre-reduction, and hydride generation procedures. Under the optimal conditions, the limits of detection (3σ, n = 11) of the developed method were 0.015 µg/L and the linear ranges were 0.05-5.0 µg/L for both Sb(III) and Sb(III + V). The relative standard deviations (n = 11) of the spiked samples of Sb(V) were 3.2% (0.05 µg/L), 3.3% (0.2 µg/L), and 1.7% (0.5 µg/L), respectively. The spiked recoveries of lake water, treated wastewater, and seawater ranged from 97.0% to 108.5%. The novel system of flow injection coupled with hydride generation atomic fluorescence spectrometer (FI-HG-AFS) was applied to carry out an 18-h fixed-point monitoring at a secondary settling tank of a wastewater treatment facility in Xiamen University, and a 6-h real-time underway analysis in the surface seawater of Dongshan Bay, China, proving that the system was capable of long-term monitoring in the field.

2.
Sci Total Environ ; 914: 169784, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181945

RESUMEN

Dissolved sulfide in sediment porewater significantly influences aquatic ecosystems. Conventionally, sulfide determination in sediment porewater relies on ex-situ analytical methods, susceptible to measurement errors due to sulfide oxidation and volatilization during sample analysis. In this study, we introduced an innovative in-situ method for assessing dissolved sulfide in surface sediment porewater, leveraging the integration of diffusive gradients in thin films (DGT) with digital imaging. The DGT device effectively concentrates sulfide in sediment porewater, inducing observable color changes in the binding gel. Recordings of these changes, captured by imaging equipment, facilitated the establishment of calibration curves correlating grayscale value alterations in the binding gel to sulfide concentrations. Under optimal conditions, the developed method demonstrated a linear detection range of 3.0-200 µmol L-1 at 20 °C, particularly when the exposure time exceeded 180 min. The developed method is insensitive to salinity and suitable for measuring sulfide concentrations in various natural water environments. Compared to traditional ex-situ methods, our approach circumvents challenges linked to intricate pre-treatment, prolonged analysis duration, and significant systemic errors. This proposed method presents a real-time solution for sulfide concentration assessment in surface sediment porewater, empowering researchers with an efficient means to monitor and study dynamic sulfide levels.

3.
Anal Chem ; 95(42): 15621-15627, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37816153

RESUMEN

Trace levels of Hg, As, Sb, and Bi in coastal seawater have been simultaneously detected by a laboratory-built multichannel chemical vapor generation coupled to an atomic fluorescence spectrometer. The system was configured with a built-in electrochemical H2 generator as the fuel supplier to replace chemical H2 produced by the oxidation of potassium borohydride under acidic conditions in traditional instruments. The electrochemical H2 generator not only isolated the atomization process from the chemical vapor injection process but also improved the stability of atomization, excitation, and fluorescence emission in the hydrogen flame, making it easier to optimize conditions for CVG while introducing evaporating multielement vapors. Calibrations were obtained using a mixed standard solution of Hg(II), As(III), Sb(III), and Bi(III). The addition of KBr to a 3% (v/v) HCl solution was selected as the preservative to ensure the stability of 0.10 µg/L Hg(II) in a multielement standard solution for at least 15 days while also preserving µg/L levels of As(III), Sb(III), and Bi(III) stable. The method detection limits (LOD, 3σ) were 0.001, 0.015, 0.010, and 0.005 µg/L for Hg, As, Sb, and Bi, respectively. The relative standard deviations (RSD, n = 7) of the standard spiked seawater samples were 3.2% (0.020 µg/L Hg), 1.2% (0.50 µg/L As), 1.0% (0.50 µg/L Sb), and 3.5% (0.050 µg/L Bi), respectively. The recoveries of seawater samples spiked with different salinities were in the range of 84.5%(Sb)-114%(Hg). The system has been successfully applied to the simultaneous analysis of the four elements in the seawater samples collected from Xiamen Bay, Southeast China.

4.
ACS Sens ; 8(7): 2702-2712, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357408

RESUMEN

Total alkalinity (TA) is an essential variable for the study of physical and biogeochemical processes in coastal and oceanic systems, and TA data obtained at high spatiotemporal resolutions are highly desired. The performance of the current in situ TA analyzers/sensors, including precision, accuracy, and deployment duration, cannot fully meet most research requirements. Here, we report on a novel high-precision in situ analyzer for surface seawater TA (ISA-TA), based on an automated single-point titration with spectrophotometric pH detection, and capable of long-term field observations. The titration was carried out in a circulating loop, where the titrant (a mixture of HCl and bromocresol green) and seawater sample were mixed in a constant volume ratio. The effect of ambient temperature on the TA measurement was corrected with an empirical formula. The weight, height, diameter, and power consumption of ISA-TA were 8.6 kg (in air), 33 cm, 20 cm, and 7.3 W, respectively. A single measurement required ∼7 min of running time, ∼32 mL of seawater, and ∼0.6 mL of titrant. ISA-TA was able to operate continuously in the field for up to 30 days, and its accuracies in the laboratory and field were 0.5 ± 1.7 µmol kg-1 (n = 13) and 10.3 ± 2.8 µmol kg-1 (n = 29) with precisions of 0.6-0.8 µmol kg-1 (n = 51) and 0.2-0.7 µmol kg-1 (n = 8), respectively. This study provides the research community with a new tool to obtain seawater TA data of high temporal resolution.


Asunto(s)
Agua de Mar , Océanos y Mares , Espectrofotometría
5.
Sci Total Environ ; 880: 163281, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023803

RESUMEN

Ammonium (NH4+) is an important parameter for aquatic ecosystems. To date, continuous and underway acquisition of NH4+ in coastal and estuarine waters has been challenged by the strongly varying salinity and complex matrices in these waters. To address these issues, a hollow fiber membrane contactor (HFMC) was constructed and incorporated in flow injection analysis (FIA) to achieve online separation/preconcentration of NH4+ in water. In the FIA-HFMC system, NH4+ in the water sample was converted into NH3 under alkaline conditions in the donor channel. The generated NH3 diffused across the membrane and was absorbed in an acid solution in the acceptor channel. The resultant NH4+ in the acceptor was then quantified based on a modified indophenol blue (IPB) method. Parameters affecting the performance of the FIA-HFMC-IPB system were evaluated and optimized. Under the optimized conditions, the proposed system exhibited a limit of detection of 0.11 µmol L-1, with relative standard deviations of 1.0-1.9 % (n = 7), and a good linear response (R2 = 0.9989) for the calibration in the field with NH4+ standards in the range of 0.40-80 µmol L-1. The proposed system was applied to a shipboard underway measurement of NH4+ in a two-day cruise in the Jiulong River Estuary-Xiamen Bay, China. A good agreement was observed between measurements from the proposed system and those from manual sampling and laboratory analysis. Both laboratory and field results demonstrated that the system was free of salinity effect and interference from organic nitrogen compounds. The system also showed excellent stability and reliability during a 16-day observation. This work suggests that the proposed FIA-HFMC-IPB system is applicable for the underway measurement of NH4+ in water, especially for estuarine and coastal waters with varying salinity and complex matrices.

6.
Sci Total Environ ; 863: 160919, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36529398

RESUMEN

Reliable high-resolution data is essential for understanding the aquatic sulfur biogeochemical processes. However, the accurate quantification of total dissolved sulfide (TDS) remains challenging due to its low concentration and vulnerability to oxidation. Furthermore, the frequency and the spatial coverage of TDS measurements are constrained by the cost of the laboratory analysis. In this study, an automated portable system was developed for on-site real-time measurement of trace TDS in natural waters. This system was based on the classic methylene blue (MB) spectrophotometric assay combined with on-line solid phase extraction (SPE) and flow injection analysis (FIA). A commercially available weak-cation-exchange cartridge was used as the SPE sorbent. Experimental parameters affecting the performance of the proposed system were optimized. Under the optimized conditions, linear calibration range of 0.02-2.50 µmol L-1 was obtained with a sample loading volume of 5.0 mL and a sample throughput of 12 h-1. The limit of detection could be lowered to 0.003 µmol L-1 by pre-concentrating 10.0 mL sample. The precision, determined as the relative standard deviation (RSD), was <2.75 % (n = 11) and the recoveries from spiked samples ranged from 54.4 % to 97.5 % with RSDs of 1.1-2.3 % (n = 3). Furthermore, the FIA-SPE-MB system was successfully deployed in the Taihu Lake for continuous 48 h monitoring of variations in TDS, demonstrating the applicability of this system for on-site TDS measurement in natural waters.

7.
Huan Jing Ke Xue ; 43(11): 4822-4834, 2022 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-36437055

RESUMEN

On-field monitoring is an important way to obtain data in marine environmental research. The ocean environmental conditions are harsh and complex, and there are many difficulties in seawater sample collecting, storing, and transporting. Therefore, the on-field and in-situ detections of chemical parameters have always been pursued by oceanographers and have become a research hot point in the seawater analysis field. In this review, the recent research progress of detection methods with molecular spectroscopy techniques for trace nutrients and metals in seawater was summarized. From the view of sensitivity and detection range, we discussed analytical techniques of trace nutrients (phosphate, nitrate, nitrate, and ammonium) and metals (iron, manganese, copper, and aluminum). It focused on methods of on-field and in-situ measures and development of optical methods such as spectrophotometry, fluorescence, and chemiluminescence, as well as the corresponding instruments that are most suitable in marine field observation. Examples of the application of these methods and relative instruments in land-and ship-based laboratories, ship-board underway monitoring, and long-term in-situ observation were presented. The key problems and possible solutions were analyzed, and the future development of the research field was proposed.


Asunto(s)
Nitratos , Agua de Mar , Agua de Mar/química , Metales , Análisis Espectral , Nutrientes/análisis
8.
Huan Jing Ke Xue ; 43(11): 4835-4844, 2022 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-36437056

RESUMEN

Sulfide in natural waters is highly toxic to aquatic organisms. The occurrence of sulfide in natural waters is closely related to water quality and the biogeochemical processes of many other elements because of the labile chemical properties of sulfide. Therefore, it is very important to obtain real and timely concentrations of sulfide in natural waters. In fact, the determination of sulfide in natural waters has long been a hot issue in the field of environmental monitoring. Researchers have developed various analytical methods, mainly based on spectrophotometry, fluorescence spectroscopy, chemiluminescence, electrochemistry, chromatography, and flow-based techniques. In addition, substantial progress has been made in the aspect of automation and intelligence. This review systematically summarized the state-of-the-art progress on the determination of sulfide in natural waters, including sample collection and pretreatment, laboratory analysis, on-site analysis, and in-situ monitoring. The advantages and disadvantages and application scope of each method were compared. The trend of future development was also proposed.


Asunto(s)
Monitoreo del Ambiente , Sulfuros , Sulfuros/química , Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia , Calidad del Agua
9.
Sci Total Environ ; 829: 154594, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35307437

RESUMEN

Total dissolved sulfide (TDS) plays multiple important roles in the aquatic environments. However, the determination of trace levels of TDS in natural waters is challenging because TDS is vulnerable to oxidation and volatilization. In this study, a fully automated flow injection analysis spectrophotometric system, incorporating a hollow fiber membrane contactor (HFMC) and a long path length liquid waveguide capillary cell, was fabricated to facilitate the on-site measurement of trace TDS in natural waters. The HFMC was used for matrix separation and analyte preconcentration. The measurement was based on the reaction of sulfide and N,N-dimethyl-p-phenylenediamine in the presence of FeCl3 under acidic conditions to yield methylene blue (MB). The proposed method was highly sensitive, with detection and quantification limits of 0.57 and 1.90 nmol L-1, respectively. The linear working range was from 1.90 to 150 nmol L-1, with a correlation coefficient of 0.9995. The repeatability, expressed as the relative standard deviation, was less than 0.86% (n = 15) and the recoveries varied from 76.2 ± 0.1% to 103.9 ± 0.6% (n = 3) for spiked samples. This method was applied to conduct a field analysis of TDS in a reservoir, giving results aligned with those obtained using a standard MB method. This work demonstrates that the new method for determining TDS was effective for both laboratory analysis and on-site measurement.


Asunto(s)
Análisis de Inyección de Flujo , Sulfuros , Análisis de Inyección de Flujo/métodos , Azul de Metileno , Espectrofotometría/métodos , Sulfuros/análisis
10.
Sci Total Environ ; 815: 152613, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998751

RESUMEN

Citizen scientists-based water quality surveys are becoming popular because of their wide applications in environmental monitoring and public education. At present, many similar studies are reported on collecting samples for later laboratory analysis. For environmentally toxic analytes such as ammonium and nitrite, on-site detection is a promising choice. However, this approach is limited by the availability of suitable methods and instruments. Here, a simple on-site detection method for ammonium and nitrite is reported. The chemistry of this method is based on the classic Griess reaction and modified indophenol blue reaction. Digital image colorimetry is carried out using a smartphone with a custom-made WeChat mini-program or free built-in applications (APPs). Using a simple and low-cost analytical kit, the detection limit of 0.27 µmol/L and 0.84 µmol/L is achieved for nitrite and ammonium, respectively, which are comparable to those achieved with a benchtop spectrophotometer. Relative standard deviations (n = 7) for low and high concentrations of nitrite are 3.6% and 4.3% and for ammonium are 5.6% and 2.6%, respectively. Identical results with a relative error of less than 10% are obtained using different smartphones (n = 3), color extracting software (n = 6), and with multiple individual users (n = 5). These results show the robustness and applicability of the proposed method. The on-site application is carried out in an in-campus wastewater treatment plant and at a local river. A total of 40 samples are analyzed and the analytical results are compared with that obtained by a standard method and a spectrophotometer, followed by a paired t-test at a 95% confidence level. This proposed on-site analytical kit has the advantages of simplicity and portability and has the potential to be popular and useful for citizen science-based environmental monitoring.


Asunto(s)
Compuestos de Amonio , Ciencia Ciudadana , Medios de Comunicación Sociales , Humanos , Nitritos , Teléfono Inteligente , Programas Informáticos
11.
Biol Trace Elem Res ; 200(2): 855-867, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33792858

RESUMEN

Wild-caught seafood contains significant amounts of mercury. Investigating the mercury accumulation levels in wild-caught seafood and analyzing its migration and transformation are of great value for assessing the health risks of mercury intake and for the tracking of mercury sources. We determined the concentrations and stable mercury isotopic compositions (δ202Hg, Δ199Hg, Δ200Hg, and Δ201Hg) of 104 muscle samples collected from 38 species of seafood typically harvested from the Taiwan Shallow Fishing Ground (TSFG), Southern Taiwan Strait. Overall, the concentrations of total mercury (THg) and methylmercury (MeHg) ranged from 11 to 479 ng/g (dry weight, dw) and 10 to 363 ng/g (dw), respectively, and were below the threshold value established by the USEPA and the Chinese government. Demersal and near-benthic species accumulated more mercury than pelagic or mesopelagic species. The characteristics of mercury isotopes in wild-caught marine species differed in terms of vertical and horizontal distribution. Considering the known peripheral land sources of mercury (Δ199Hg ≈ 0), the mercury in seafood from the TSFG (Δ199Hg > 0) did not originate from anthropogenic emissions. The ratio of Δ199Hg and Δ201Hg (1.18 ± 0.03) suggested that the photoreduction of Hg (II) and the photo-degradation of MeHg equally contributed to mass-independent fractionation. Based on the values of Δ199Hg/δ202Hg (1.18 ± 0.03), about 67% of the mercury in seawater had undergone microbial demethylation prior to methylation and entering the seafood. Additionally, the vertical distribution of Δ200Hg in seafood from different water depths implies that mercury input was in part caused by atmospheric deposition. Our results provide detailed information on the sources of mercury and its transfer in the food web in offshore fishing grounds.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Peces , Caza , Mercurio/análisis , Alimentos Marinos/análisis , Taiwán , Contaminantes Químicos del Agua/análisis
12.
Sci Total Environ ; 800: 149517, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391153

RESUMEN

High-resolution time-series concentrations (CTS) are very important for the investigation of the biogeochemical processes of trace metals in the aquatic environment. However, the acquisition of CTS of trace metals in water is still challenging because of the lack of suitable samplers. In this study, an osmotic sampler coupled with air segment injection and preservative addition was employed for time-series sampling of trace metals in surface waters. In the sampler, water sampling and preservative adding are both driven by osmotic pumps (OPs), while air segment injection is accomplished by a timer-controlled micro diaphragm pump. During deployment, the sampling OP continuously draws water through a filter and stores it in a narrow-bore coil. Simultaneously, a preservative OP slowly pushes 30% HNO3 (v/v) into the collected sample for in situ preservation. Periodically, the micro diaphragm pump injects air into the continuous water stream to divide it into water segments, enabling accurate time-stamping. After retrieval, the time-series samples were pumped out from the coil and re-collected to analyze the CTS of analytes. The sampler was deployed in river, reservoir, and marine waters for 26 h and one week to measure CTS of trace metals at time resolutions of 2 h and 12 h. Results showed that the recoveries of a preloaded standard mixture (1.0 µg/L) in all samplers ranged from 93.1% to 117.8%. The measured CTS of Cd, Co, Cr, Cu, Mn, and Ni in the waters only varied in small ranges. Accordingly, the measured CTS data from the sampler were consistent with the obtained concentrations from grab sampling. The relative percent differences between the measurements from two samplers were less than 37.4%. These results demonstrate the reliability and accuracy of the sampler for time-series sampling of the chosen trace metals in surface waters.


Asunto(s)
Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Reproducibilidad de los Resultados , Ríos , Contaminantes Químicos del Agua/análisis
13.
Talanta ; 232: 122404, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074395

RESUMEN

A versatile flow analyzer that extended the features of reverse flow injection analysis (rFIA) was developed in this study and named reverse flow dual-injection analysis (rFDIA). Compared with typical rFIA, the analyzer requires less reagent and is more environmentally friendly, which has two injection valves and two reagent loops for the accurate and successive injection of two reagents. With a 2-m long liquid waveguide capillary cell (LWCC) and a spectrophotometer, the analyzer was applied to underway determination of dissolved iron redox species in estuarine and coastal waters. Detection limits of 0.18 and 0.20 nmol L-1 were achieved for Fe(II) and Fe(II + III), respectively and a linear dynamic range of 0.5-450 nmol L-1 was obtained for both Fe(II) and Fe(II + III). The sample throughput for the simultaneous measurement of Fe(II) and Fe(II + III) was 12 h-1, and each analysis consumed only 8 mL sample, 520 µL ferrozine solution, and 260 µL ascorbic acid solution. The analyzer was also used to measure nanomolar amounts of soluble reactive phosphorus (SRP) in seawater. The detection limit and the linear dynamic range for the SRP assay were 0.5 nmol L-1 and 1.5-850 nmol L-1. For SRP determination, the sample throughput was 20 h-1, and each analysis required 9 mL of sample, 130 µL of mixed reagent solution and 260 µL of ascorbic acid. The analytical results were reproducible, with a relative standard deviation of 1.4% (2.5 nmol L-1, n = 10), 2.1% (2.5 nmol L-1, n = 10), and 2.1% (10 nmol L-1, n = 11) for Fe(II), Fe(II + III), and SRP, respectively.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119162, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33221138

RESUMEN

In this study, we proposed a novel method for the determination of nanomolar dissolved sulfides, including H2S, HS-, and S2- (defined as S(-II)) in water by coupling the classical methylene blue (MB) method with surface-enhanced Raman spectroscopy (SERS) detection. Overall, the following analytical procedures were employed: i) precipitation of S(-II) as zinc sulfide, ii) centrifugation to collect zinc sulfide, iii) derivatization of S(-II) to MB by the reaction with N, N-dimethyl-p-phenylenediamine in the presence of FeCl3 under acidic conditions, and iv) SERS detection. Parameters affecting the derivatization and SERS detection were optimized. Under the optimized conditions, a linear range of 12.3 nmol/L-200 nmol/L for S(-II) was obtained with a correlation coefficient (R2) of 0.99. Limits of detection and quantification of the developed method were estimated to be 3.7 nmol/L and 12.3 nmol/L, respectively. In addition, the proposed method demonstrated excellent tolerance to coexisting substances, such as NO2-, NO3-, SO32-, and other common ions. The proposed method demonstrates immense promise for the determination of nanomolar S(-II) in surface waters and wastewater.

15.
Sci Total Environ ; 759: 143538, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33229095

RESUMEN

The analysis of time-series concentrations (CTS) is of great importance when investigating the biogeochemical processes of nutrients in aquatic environments. However, obtaining CTS of nutrients remains a challenge using current sampling techniques. In this study, a novel in situ sampler was constructed using reverse osmosis membrane (ROM) osmotic pumps (OP) (ROM-OP sampler), and was used to obtain the CTS of nutrients in surface waters. The sampler consisted of a sampling OP, sample storing coil, filter, bubble injection module, and preservative adding module. When deployed, the sampling OP continuously draws ambient water through the filter into the sample storing coil, while simultaneously the preservative adding module continuously delivers preservative (H2SO4 solution) into the water flow. The bubble injection module periodically injects air bubbles into the sample storing coil, to segment the sample and create time stamp indicators that allow the sample age to be defined. Upon retrieval, the sample segments in the coil are sequentially pumped out of the sample storing coil and transferred into different vials for further analysis. The sampler was applied to measure the CTS of various nutrients, including dissolved total nitrogen, dissolved total phosphorus, dissolved reactive phosphorus, and nitrate in a river over a 20 day period and in municipal sewage treatment plant effluent for a 36 h period. Results showed that the ROM-OP sampler successfully obtained CTS of nutrients, capturing nutrient variations at a high temporal resolution. This sampler is relatively low-cost (~USD 300), small in size, lightweight, robust and does not require an external power source, showing high promise as an effective and efficient tool for monitoring nutrient CTS in aquatic environments.

16.
ACS Omega ; 5(49): 31551-31558, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33344807

RESUMEN

A novel integrated analyzer was developed for the in situ determination of two-dimensional (2D) dissolved Fe(II) distributions in sediment pore water. The analyzer utilized gel enrichment and optical imaging techniques. An image probe mainly consisting of a gel holder and portable document scanner was designed to be inserted into sediment. The gel holder exposed to the sediment was made to hold a polyacrylamide gel strip (diffusive gel) and polyacrylamide gel strip impregnated with C18 and coated with ferrozine (concentrating gel). The concentrating gel strip could accumulate the dissolved Fe(II) in pore water and produce a magenta-colored Fe(II)-ferrozine compound on the gel strip in two dimensions. The portable document scanner sealed in a transparent box and stuck onto the back of the gel holder could record gel images from the back of the concentrating gel strip. Gel images with grayscale intensities were acquired and analyzed using ImageJ software, and Fe(II) concentration was determined based on a deployment time related calibration curve established in the laboratory. The measurement accuracy and precision were investigated. The quantitative range reached up to 200 µmol L-1. The method and analyzer exhibit distinct characteristics of in situ enrichment and measurement; they were successfully applied to determine the 2D Fe(II) distribution in lake and marine sediment pore waters.

17.
Anal Chem ; 92(6): 4379-4386, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32056426

RESUMEN

Automated in-field methods for measuring dissolved reactive phosphorus (DRP) over a large concentration range are in high demand for the purpose of better understanding the biogeochemistry of phosphorus in the river-estuary-coast continuum to the open ocean. Here, an automated portable and robust analyzer was described for the determination of nanomolar to micromolar levels of DRP in natural waters. The quantification of DRP was based on classic phosphomolybdenum blue (PMB) chemistry. All the components of the analyzer were computer-controlled using LabVIEW-based laboratory-programmed software. When equipped with a 3 cm Z-type flow cell, the system demonstrated linearity with concentrations up to 12 µmol L-1, a sampling rate of 20 h-1, a limit of detection of 0.11 µmol L-1, and relative standard deviations (RSDs) of 0.4-4.6% (n = 11-576). When a solid-phase extraction cartridge was combined with the analyzer, the PMB formed from the sample was automatically concentrated on the hydrophilic-lipophilic balanced sorbent. The concentrated PMB compound was eluted with NaOH solution and measured in the spectrophotometric system. Under optimal conditions, the nanomolar-level mode afforded a sampling rate of 8 h-1, a limit of detection of 1.7 nmol L-1, and RSDs of 3.0-5.7% (n = 11-120). The system exhibited advantages that included a wide linear range, high sensitivity and reproducibility, low reagent consumption, and insignificant interference from salinity, silicate, arsenate, and other P-containing compounds. The system was successfully applied for discrete sample analysis, fixed site online monitoring, and the real-time underway measurement of DRP in riverine-estuarine-coastal waters.

18.
J Chromatogr A ; 1613: 460672, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-31727353

RESUMEN

In the present study, porous monolith-based magnetism-reinforced in-tube solid phase microextraction (MB-MR/IT-SPME) was first introduced to concentrate sulfonylurea herbicides (SUHs). To realize the effective capture of SUHs, a monolithic capillary microextraction column (MCMC) based on poly (vinylimidazole-co-ethylene dimethacrylate) polymer doped with Fe3O4 magnetic nanoparticles was in-situ synthesized in the first step. After that, the MCMC was twined with a magnetic coil which was employed to carry out variable magnetic field during adsorption and desorption procedure. Various important parameters that affecting the extraction performance were inspected in detailed. Results well indicated that exertion of magnetic field in the whole extraction procedure was in favor of the capture and release of the studied SUHs, with the extraction efficiencies increased from 36.8-58.1% to 82.6-94.5%. At the same time, the proposed MB-MR/IT-SPME was online combined to HPLC with diode array detection (HPLC/DAD) to quantify trace levels of SUHs in water and soil samples. The limits of detection (S/N = 3) for water and soil samples were in the ranges of 0.030-0.15 µg/L and 0.30-1.5 µg/kg, respectively. The relative standard deviations (RSDs) for intra- and inter-day variability were both less than 10%. Finally, the introduced approach was successfully applied to monitor the low contents of studied SUHs in environmental water and soil samples. Satisfying fortified recovery and precision were achieved.


Asunto(s)
Monitoreo del Ambiente/métodos , Herbicidas/análisis , Suelo/química , Microextracción en Fase Sólida , Agua/química , Cromatografía Líquida de Alta Presión , Herbicidas/aislamiento & purificación , Magnetismo , Polímeros , Porosidad , Compuestos de Sulfonilurea/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación
19.
Anal Chim Acta ; 1081: 18-31, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31446956

RESUMEN

Accurate and precise marine CO2 system measurements are important for marine carbon cycle research and investigations of ocean acidification. Seawater pH is important because it can be used to characterize a wide range of chemical and biogeochemical processes. Saturation states of calcium carbonate minerals, which are directly proportional to carbonate ion concentration ([CO32-]), influence biogenic calcification and rates of carbonate dissolution. Spectrophotometric pH and carbonate ion measurements can both benefit greatly from the high sensitivity, stability, consistency and processing speed made possible through automation. Spectrophotometric methods are well-suited for shipboard, underway and in situ deployments under harsh conditions. Spectrophotometric pH measurements typically have a reproducibility of 0.0004-0.001 for shipboard and laboratory measurements and 0.0014-0.004 for in situ measurements. Shipboard spectrophotometric measurements of [CO32-] are becoming common on research expeditions. This review highlights the development of methods and instrumentation for spectrophotometric pH and [CO32-] measurements, and discusses the pros and cons of current technology. A comprehensive summary of the analytical merits of different flow analysis instruments is given. Aspects of measurement protocols that bear on the quality of pH and [CO32-] measurements, such as indicator purification, sample pretreatment, etc., are also described. Based on three decades of experience with seawater analysis, this review includes method recommendations and perspectives directly applicable or potentially applicable to pH and [CO32-] analysis of seawater.

20.
Anal Chim Acta ; 1076: 100-109, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31203953

RESUMEN

Methods for determining nitrate and nitrite have been comprehensively developed. However, there are few studies of simultaneous shipboard high-frequency monitoring of these two nutrients in estuarine and coastal area. In this study, a multipurpose integrated syringe-pump-based environmental-water analyzer (iSEA) was combined with an on-line filtration system for underway analysis of nitrate and nitrite in saline samples. Vanadium chloride was used instead of a toxic cadmium column to reduce nitrate to nitrite, which was measured on the basis of the classic Griess reaction. This fully automated analyzer had a limit of detection of 0.02 µmol L-1 for nitrite and 0.14 µmol L-1 for nitrate. The sample throughput was 12 h-1 for simultaneous measurement of nitrite and nitrate. With automated dilution, the calibration curve for nitrate was linear up to a concentration of 400 µmol L-1 (R2 > 0.999). The relative standard deviation of 24-h measurement (n = 288) of nitrite is 0.92% and that of nitrate is 1.4%. Both the reference solutions and samples of different salinities (range of 0-35) were measured (n = 85). According to the statistical t-test (P = 0.95), the results were insignificantly different from the results obtained using the reference method. After several cruise tests, the analyzer showed excellent spatial resolution for underway analysis of nitrite and nitrate in estuarine and coastal waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...